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Objectives: In widely used protocols for the collection and isolation of cord blood mononuclear cells, inves-
tigators are leftwith substantial volumes of dilutedplasmawhich could beused for othermeasurements. The aim
of this study was to ascertain the validity of umbilical cord blood (UCB) diluted plasma samples for vitamin D, A
and E analysis compared to UCB serum samples.

Design & methods: Twenty UCB matched samples of diluted plasma and serum were collected. The samples
were analysed by two liquid chromatography–tandemmass spectrometry (LC–MS/MS) methods on two separate
occasions.

Results: The results of 25(OH)D3 obtained by the two laboratories demonstrated close agreement with amean
difference of 0.14 nmol/L [95% confidence interval (95% CI),−6.8 to 7.1]. Both methods demonstrate close agree-
ment for 25(OH)D3 in UCB serum versus diluted UCB plasma; mean difference 2.2 nmol/L [95% CI, −9.5 to 13.9]
and 4.1 nmol/L [95% CI,−14.5 to 6.1] for the results from Lab A and Lab B, respectively. Vitamin A was quantified

by Lab A in UCB serum and diluted UCB plasma; mean difference 0.07 μmol/L [95% CI, −0.41 to 0.28]. Results of
25(OH)D3 epimer and vitamin E in the diluted UCB plasma were below the limit of quantification, and could not
be compared with UCB serum.

Conclusions: Diluted UCB plasma can be used for the quantification of retinol and 25(OH)D3 by LC–MS/MS. By
contrast, quantification of 25(OH)D3 epimer and vitamin E in dilutedUCB plasma is not supported by this study due
to limitations in analytical sensitivity.
© 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
1. Introduction

Fat soluble vitamin deficiency is classically associated with com-
plications of diseases presenting in neonates [1]. Of the four vitamins
in this group, vitamins A, D and also K have pleiotropic actions whilst
vitamin E has important anti-oxidant activity. Of these, vitamin D has
received a lot of attention recently as a result of the meteoric rise in
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the number of publications showing that this secosteroid plays a crucial
role in a plethora of physiological functions and is associatedwithmany
acute and chronic illnesses. In particular, there is mounting interest in
the potential importance of vitamin D status, and to a lesser extent vita-
min A, during early life for a wide range of health outcomes [2].

Liquid chromatography coupled with tandem mass spectrometry
(LC–MS/MS) quantification of each of these fat soluble vitamins, includ-
ing separation of epi-25(OH)D3, is now established [3–5]. Serum, and
also undiluted plasma, are the validated matrixes for analysis of vitamins
A (retinol), D (25(OH)D3) and E (α-tocopherol). However the diluted
plasma matrix, which is widely used in protocols for the collection and
isolation of viable mononuclear cells, has not been validated for use in
the LC–MS/MS analysis of small molecules. Given the limited volumes
of blood available in birth cohort studies, and the implicit value of these
in the context of a research intensive large-scale epidemiological projects,
it is of interest to determine whether vitamins D, A and E may be ade-
quately measured in diluted plasma from umbilical cord blood (UCB).
hts reserved.
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The aim of this studywas to validate themeasurement of vitamins D
plus vitamins A and E using LC–MS/MS in diluted UCB plasma versus
UCB serum.

2. Methods

2.1. Subjects

Twenty participants, recruited as part of the Barwon Infant Study
(BIS),were randomly selected for comparison ofmatched serumand di-
luted plasma of UCB samples. BIS is a population derived birth cohort
study conducted in south-eastern Australia that has been designed to
investigate the early life origins of immune dysregulation. UCB was col-
lected and stored as part of the BIS protocol. The project was approved
by the Barwon Health Human Research Ethics Committee (10/24) and
written informed consent was obtained prior to collection.

2.2. Sample collection

The primary aim in collection of UCB was to isolate a large num-
ber of viable mononuclear cells (MNC) that could be cryopreserved
for future immune studies. To this end, two separate samples of UCB
were collected using a 50 mL syringe inserted into the umbilical
cord vein. Where there was an adequate volume of UCB, the major-
ity of the sample was added to a sterile tube containing exactly
20 mL of sterile Transport Medium (RPMI-1640) with 10 IU/mL
preservative-free heparin (DBL Heparin Injection BP (porcine mu-
cous) 5000 IU/5 mL), and the remaining blood added directly to a
serum collection tube. Samples of serum were collected and aliquoted
after the tube was centrifuged (2700 g, 10 min at 20 °C). In addition, the
volume of anti-coagulated diluted UCB was accurately measured, and
the tube centrifuged (2700 g, 10 min at 20 °C). The diluted plasma
samples were aliquoted and stored with the matched serum sam-
ples at −80 °C.

2.3. Dilution of UCB plasma

Once the blood cells were pelleted, the diluted plasma volume was
estimated (=total volume anti-coagulated diluted UCB − volume of
pelleted blood cells), and then the dilution factor was calculated (=(di-
luted plasma volume− 20)mL/diluted plasma volume (mL)). Depend-
ing on the volume of UCB collected, samples ranged in dilution from
0.26 to 0.43 (mean ± SEM 0.32 ± 0.01) of neat plasma.

2.4. Experimental

Twenty UCB sera and 20 diluted plasma de-identified samples were
thawed and 150 μL aliquots delivered in a Styrofoam container to labo-
ratory A (Lab A) [LC–MS/MS laboratory, Clinical Biochemistry Mass
Spectrometry Laboratory, RMIT University, VIC, Australia] and to labora-
tory B (Lab B) [UWA Centre for Metabolomics, Metabolomics Australia,
University of Western Australia, WA, Australia]. Both laboratories were
blinded to the sample pairs for analysis and results were returned to the
BIS coordinator (FC) for pair identification. Samples were analysed in
two non-consecutive runs (R1 and R2) in random order to consider be-
tween run effects in the two laboratories.

The two LC–MS/MS methods are briefly described below:

2.4.1. Laboratory A
This LC–MS/MSmethod was established for the simultaneous quan-

tification of fat soluble vitamins [25(OH)D3, vitamin A (retinol) and E
(α-tocopherol)] and utilised an Agilent-1200 LC coupled with an
Agilent-6410 Triple Quadrupole Mass Spectrometer (Agilent Technolo-
gy Inc., VIC, Australia).

Samples (100 μL) were prepared using a routine liquid–liquid hexane
extraction which incorporated tri-deuterated 25-hydroxy vitamin D3
(25(OH)D3-d3) and hexa-deuterated α-tocopherol as the internal
standards (IsoSciences LLC, PA, USA). A pursuit pentafluorophenyl
(PFP) column (150 mm × 2 mm, 3 μm) (Agilent Technology Inc., VIC,
Australia), with matching guard column was used to separate the fat
soluble vitamins; this included clear separation of 25(OH)D3 from its
epimer (epi-25(OH)D3).

Electrospray ionisation (positive-mode) in association with mul-
tiple reaction monitoring (MRM) was utilised to quantify 25(OH)D3
and its isomer (401 → 383), retinol (269 → 93) and α-tocopherol
(431 → 165). The 25(OH)D3-d3 (404 → 386) was used as the internal
standard for 25(OH)D3 and retinol (its match stable internal standard
was unavailable, thus, and 25-(OH)D3-d3 was used as the closest reten-
tion time to retinol) whilst hexa-deuterated α-tocopherol (437 → 171)
was the internal standard for α-tocopherol [6]. Vitamin D was calibrated
using a Recipe Calibrator set (Recipe, Munich, Germany) which is report-
ed to be traceable to NIST-SRM972. Vitamins A and E were calibrated
using the Bio-Rad Calibrator (Bio-Rad Laboratories, Munich, Germany)
which is traceable to NIST-SRM968e [7].

Method imprecision for 25(OH)D3 is 2.6%, 3.1% and 4.7% at 150, 68
and 25 nmol/L, respectively; for vitamin A 2.9%, 3.8% and 4.7% at 3.4,
1.7 and 0.5 μmol/L, respectively; and for vitamin E is 4.4%, 4.0% and
5.5% at 54, 22 and 6 μmol/L, respectively. The LOQ was 3.5 nmol/L for
25(OH)D3 and its epimer, 0.16 μmol/L and 3 μmol/L for vitamins A
and E, respectively [8]. Independent ongoing peer reviewof thismethod
is conducted through participation in the Royal College of Pathologists
of Australasia Quality Assurance Programs (RCPAQAP) (Fig. 1a) [9].

2.4.2. Laboratory B
This LC–MS/MS method is for the analysis of 25(OH)D3 and it

epimer. Analysis was performed on an Agilent-6460 coupled to a
2-dimensional 1290 UPLC system. The method uses 50 μL of serum
and has a run time of 8 min. Vitamin D was calibrated using a
Chromsystems Calibrator set (Chromsystems, Munich, Germany)
which is reported to be traceable to NIST-SRM972. The imprecision
of the method for 25(OH)D3 at 75 nmol/L and 18 nmol/L is 0.5%
and 2.2%, respectively. The LOQ for 25(OH)D3 is 2 nmol/L [10]. Inde-
pendent ongoing peer review of this method is conducted through
participation in the Vitamin D standardisation programme run by
the CDC and NIH [11] (Fig. 1b).

2.5. Statistical analysis

Passing–Bablok regression and Bland–Altman difference plots were
used to compare the results of vitamin measurements in UCB serum
and diluted UCB plasma. Spearman correlation was used to examine the
group of results. A p-value was calculated using the Mann–Whitney
two-tailed test, and p b 0.05 was considered statistically significant. Per-
centage mean differences were calculated based on the average percent-
age differences of the overall peer results. All statistical calculations and
comparison plots were conducted using XLSTAT software [12].

Allowable total error (TEa) for vitamins A and E was taken from the
Ricos Biological Variation database [13]. TEa for vitamin D was calculat-
ed as follows [14]:
TEa% = Z × X × CVw + B
Where: Z=1.65; X=0.5; B=desirable specification for inaccu-
racy (bias).
Bias can be calculated from: B = 0.25 × [CVw2 + CVg2]1/2.
From reference [14]: Within subject biological variation
(CVw) = 8%; and between subject biological variation
(CVg) = 20%.
Then B = 0.25 × [8^2 + 20^2]^1/2 = 5.4%.
Hence the allowable total error for 25(OH)D3 is TEa% = 1.65 ×
0.5 × 8 ± 5.4 = 12%.
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Fig. 1. a: Laboratory A external quality assurance results. RCPAQuality Assurance Programs end of cycle performance for vitaminD, A and E for the secondhalf of 2013 [9]. Reproducedwith
permission. b. Laboratory B, external quality assurance results. Comparison of the CDC reference assay vs. UWA for 25(OH)D3. Data from May 2013; n = 40 [11]. Reproduced with
permission.
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3. Results

Twenty matched samples of UCB serum and diluted UCB plasma
were analysed by two LC–MS/MS laboratories (Lab Ameasured vitamin
D and its epimer, plus vitamins A and E; Lab B measured vitamin D and
its epimer) on two consecutive occasions; Fig. 2. As part of the contin-
ued monitoring of ion suppression by Lab A, two transition ions for
phospholipids (104 → 104 and 184 → 184) were monitored for each
sample that was analysed. These phospholipids could be a source of
ion suppression due to their effects on the efficiency of chromatographic
separation and the ionisation process. Inspection of the chromatograms
from Lab A demonstrated that both serum and diluted plasma display
the chromatographic separation of the target analytes as well as the
intensity of the phospholipids detected in the samples. Lab A found
that there were no co-eluted phospholipids with the target analytes
across the UCB serum and diluted plasma with RPMI. An example chro-
matogram is provided in the Supplement.

3.1. Vitamin D

The results of 25(OH)D3 obtained by the two laboratories demon-
strate close agreement as demonstrated by the Passing–Bablok regression
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and Bland–Altman plots in Fig. 3a. Results obtained by Lab A compared
with Lab B (r = 0.983, p = 0.703) with a mean difference of 0.14 nmol/
L (−4.42%) [95% confidence interval (95% CI),−6.8 to 7.1]. Bothmethods
demonstrate a close relationship between serum compared to the diluted
plasma (r = 0.914, p = 0.532 for Lab A; r = 0.904, p = 0.205 for Lab
B) with a mean differences of 2.2 nmol/L (6.6%) [95% CI, −9.5 to13.9]
and 4.1 nmol/L (−8.5%) [95% CI, −14.5 to 6.1] for the results of Lab A
and Lab B, respectively; Figs. 3b and 4a.
a) i

a) ii

a) iii

Retinol 

Vitamin A in serum

25(OH)D3 Epi-25(OH)D3

Vitamin D in serum

Epi-25(OH)D3

Retinol

25(OH)D3-d3

25(OH)D3

Fig. 2. a. Laboratory Amethod chromatograms demonstrating separation of i) fat soluble vitamin
UCB serum and diluted UCB plasma samples. All figures displayed are from the one subject. i) Th
UCB serum and diluted plasma; and iii) chromatogram of vitamin A in UCB serum and diluted
from epi-25(OH)D3 in UCB serum and diluted UCB plasma from the same subject; dilution fac
3.2. Epi-vitamin D

Epi-25(OH)D3 in UCB serum and diluted plasma samples were
quantified by both laboratories. Epi-25(OH)D3 was detected in all
serum samples, however, 40% (Lab A) and 30% (Lab B) of serum results
and all diluted plasma results were below the limit of quantification
(LoQ); Lab A LoQ is 3.5 nmol/L and Lab B LoQ is 2.0 nmol/L. Serum
epi-25(OH)D3 results above the LOQ obtained by the two laboratories
25(OH)D3 Epi-25(OH)D3

Vitamin D in plasma (diluted)

Retinol 

Vitamin A in plasma (diluted)

-Tocopherol-

-Tocopherol

α

α

s (D, A and E), ii) vitamin D inUCB serum and diluted UCB plasma sample, iii) vitamin A in
ree fat soluble vitamin chromatogram of serum sample; ii) chromatogram of vitamin D in
plasma. b. Laboratory B method chromatograms demonstrating separation of 25(OH)D3
tor is 0.37. Note y-axis scaled for comparison purposes.
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Fig. 2 (continued).
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were correlated (r = 0.869) with a mean difference −0.76 nmol/L
(−16.5%) [95% CI,−2.3 to 0.77].

3.3. Vitamin A

Retinolwasmeasured in UCB serum anddiluted samples using Lab A
method. Vitamin Awas quantifiable in all serum samples and 65% of di-
luted plasma samples; with 35% of diluted plasma results below the
method LoQ. Quantified results of vitamin A in serum and diluted plas-
ma samples demonstrated amediumcorrelation andmeandifference of
−9.9% across the analytical runs; Figs. 3c and 4b.

3.4. Vitamin E

α-Tocopherol levels were quantified in both serum and diluted
plasma; however, all of the diluted plasma results were below the LoQ
(3 μmol/L) and hence a reliable comparison could not be made.

4. Discussion

This study examined the suitability of dilutedUCBplasma, compared
with undiluted UCB serum, and provides the first report on its utility for
the quantification of vitamins A and D by LC–MS/MS. This study also
demonstrates the agreement between results obtained across two LC–
MS/MS laboratories for vitamin D, plus the continued challenges faced
in the quantitation of epi-25(OH)D3.
The appropriate selection of sample matrix is an important issue in
the assessment of a number of blood analytes in clinical laboratories. Al-
though serum and plasma are commonly used as blood specimen type,
they are not equivalent biological matrices; for example, serum has less
protein concentration than plasma as a result of blood clotting process
[15]. Whilst, evidence based recommendations are in place supporting
serum and plasma (undiluted) for the quantification of vitamins A and
E [6], similar recommendations are not currently in place for vitamin
D. The results presented here support the reliable use of serum and
RPMI 1640 diluted plasma for the quantification of vitamins A (retinol)
and D (25(OH)D3), with a wide dilution range of 26–43%.

Accuracy of results generated is important for clinical decision mak-
ing, especially when clinical practice guidelines quote absolute finite
numbers for interpretation. This point has been hotly debated in recent
years in relation to vitamin D results. Reassuringly, the 25(OH)D3 re-
sults obtained by Lab A and Lab B demonstrate close agreement, even
with the use of different commercial calibrators; with amean difference
between labs of 4.4%. This further supports the important efforts of
standardisation of methods to improve clinical utility of results, with
both commercial calibrators being traceable to the one standard refer-
ence material; NIST 972. In addition, this standardisation is further sup-
ported by the ongoing peer review of both laboratories through their
participation in an external quality assurance programme.

Although the clinical role of epi-25(OH)D3 is still unclear, epi-
25(OH)D3 is reportedly detectable serum levels in approximately
90% of adults and 93% of children [16]. Consequently, chromatographic
separation and detection of the epimer are important for accurate
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quantification of 25(OH)D3 to avoid over-estimation. In the current
study, epi-25(OH)D3 was detected in all samples of UCB serum, of
which 60% (Lab A) and 70% (Lab B) of results were higher than the
Fig. 3. a: Passing–Bablok regression plots and Bland–Altman plot demonstrating the agreement
i.e., both serumand diluted plasma. Results obtained by Lab A comparedwith Lab B (r=0.983, p
CI),−6.8 to 7.1]. b: Passing–Bablok regression plots and Bland–Altman plot demonstrating the
methods demonstrate a close relationship between serum compared to the diluted plasma (r
2.2 nmol/L (6.6%) [95% CI,−9.5 to13.9] and 4.1 nmol/L (−8.5%) [95% CI,−14.5 to 6.1] for the r
the limit for the desirable specification for allowable total error (TE%) for 25(OH)D3 (12.0%). c:
vitamin A results obtained fromUCB serum and diluted UCB plasma. Results abovemethod LoQ
diluted plasma samples demonstrated themeandifference of a−0.07 μmol/L [95% CI,−0.41 to
versus diluted UCB plasma showed a medium correlation (r = 0.45, p = 0.224).
LoQ of themethods. Previously, we have found, from studies conducted
in LabB, that the diluted epimer value can be reported typicallywhere the
initial serum value is greater than 6 nmol/L [unpublished data]. Of note
in 25(OH)D3 results obtained from LabA comparedwith Lab B for all the samples analysed
=0.703)with ameandifferences of 0.14 nmol/L (−4.42%) [95% confidence interval (95%
agreement in 25(OH)D3 results obtained from UCB serum and diluted UCB plasma. Both

= 0.914, p = 0.532 for Lab A; r = 0.904, p = 0.205 for Lab B) with a mean differences of
esults of Lab A and Lab B, respectively. Both these percentage mean differences are within
Passing–Bablok regression plots and Bland–Altman plot demonstrating the agreement in
(0.16 μmol/L)were only plotted in the graphs. Quantified results of vitamin A in serum and
0.28] representing amean change of−9.9% across the analytical runs. Results ofUCB serum
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Fig. 4. a: Box plot demonstrating the minimum, first quartile, median, third quartile, and
maximum of 25(OH)D3 results of UCB serum versus diluted UCB plasma obtained by lab-
oratories A and B. Method LoQ is 3.5 nmol/L (Lab A) and 2.0 nmol/L (Lab B) for both
25(OH)D3 and its epimer. b: Box plot demonstrating theminimum, first quartile, median,
third quartile, andmaximumof vitamin A results of UCB serumversus dilutedUCB plasma
obtained by laboratory A. The box plot was created based the results, which were higher
than method LoQ (0.16 μmol/L).
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in this current study, in contrast to the close agreement demonstrated for
25(OH)D3 is the percentage mean difference between the C3-epimer re-
sults for Labs A and B (−16.5%).

Quantitation of the C3-epimer form of 25(OH)D3 remains challeng-
ing by LC–MS/MS irrespective of the matrix. Whilst chromatographic
separation is readily achievable, there is a lack of biological variation
data for epi-25(OH)D3, the allowable TE% could not be calculated.
Further confounding quantitation was the absence of a commercial cal-
ibrator for epi-25(OH)D3; therefore in this study, the multiple level
commercial calibrators used to create the 25(OH)D3 standard curve
were applied for the quantification of epi-25(OH)D3. In addition, most
reported UCB results for epi-25(OH)D3 were close to the LoQ levels
(3.5 nmol/L for laboratory A and 2.0 nmol/L for laboratory B), and this
could be an additional source of variation between the two laboratory
results.

Vitamin A (retinol) has previously been reported in UCB serum sam-
ples and low levels (b0.7 μmol/L) have been correlated with low birth
weight [17]. Our study demonstrates a favourable comparison of UCB
serum and diluted plasma utilising LC–MS/MS methodology. The per-
centage mean difference between the results of the UCB serum and di-
luted plasma was −9.9%, which is less than the allowable TE% of
17.1% [13]. However, the results between the two groups showed ame-
dium correlation (r = 0.451). This observation might be related to the
unexplained reported difference in the biological variation for serum
(13.6%) versus plasma (6.2%) retinol [6,18,19].

Finally, in the current study, vitamin E levels in all diluted UCB plasma
results were below the method's LoQ (3 μmol/L). Our observation of the
low vitamin E in UCB is in agreement with previous findings by Didenco
and colleagues who demonstrated that cord blood α-tocopherol levels
were significantly lower than the maternal blood level by 80% [20]. It is
hypothesized that this is due to selective transfer of α-tocopherol by the
placenta. Therefore, UCB diluted plasma is not suitable for the quantifica-
tion of vitamin E.
5. Conclusion

Diluted UCB plasma can be used for the quantification of
25(OH)D3 and vitamin A by LC–MS/MS. By contrast, measurement
of the 25(OH)D3 epimer and vitamin E in diluted UCB plasma is not
supported by this study due to the current limitation of analytical
sensitivity for quantification. Potentially this limitation could
be addressed in the future through the use of increased sample
volume.
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